Identification of genes that contribute to drought stress tolerance in Populus
نویسندگان
چکیده
Background The cultivation of poplars (Populus spp.) is favored for forestry and reclamation purposes all over the northern hemisphere where they represent a commercially important resource. Poplars may become a component of programs to optimize carbon sequestration however; poplars are generally regarded as drought sensitive. The patterns of episodic drought over the last decade suggest that the development of drought tolerant poplar genotypes could be a useful tool to achieve sustained forest productivity [1]. Previous reports have shown that expression of hundreds of poplar genes changes in response to drought, presenting a problem in the identification of genes that are more important than others in counteracting the harmful effects of drought [2,3]. The genus Populus contains many fast growing hybrids that show varied drought tolerance according to genotype [4]. Hence, there is genetic variation among poplar hybrids that can be used to identify genes that contribute to drought stress tolerance. Despite extensive physiological and morphological descriptions of the response of Populus to drought, little work has been undertaken to explain genotype differences at the gene level. Therefore, this research has been undertaken and its major objective is to identify the genes that contribute to drought stress tolerance in poplar by correlating the physiological responses to gene expression. These genes may potentially be used as molecular markers in the drought tolerance breeding programs.
منابع مشابه
Identification and evaluation of HvPIP1; 4 and HvnsLTP genes expression for drought tolerance in barley
It is of great significance to understand the tolerance mechanisms by which plants deal with drought stress and application of these mechanisms for improvement of genotypes in response to drought stress. In order to identify and investigate the expression of genes involved in tolerance to drought stress, leaf and root EST were analyzed in Spontaneum (wild barley) and Nimruz (tolernt to drought ...
متن کاملMechanisms of drought stress tolerance in cool season grasses
Drought stress is one of the most limiting abiotic stresses affecting growth, production and survival of plants in many areas of the world, and is expected to intensify considering the trend of climate change. Grass species are important for the sustainability of agricultural systems, forage resources for animal farming and landscapes. Grass species adapt to water deficit by different morpholog...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملIdentification of the drought tolerance involved candidate genes in foxtail millet through an integrated meta-analysis approach
Drought stress is one of the most important factors limiting production in the agricultural sector. Due to the need to use smart agriculture adapted to climate change, the use of drought-tolerant alternative plants with high water use efficiency is of great importance. Foxtail millet (Setaria italica L.) is one of the important drought tolerant fodder and food grains in semi-arid regions. In th...
متن کاملEvaluation of grain yield and repeatability of drought tolerance indices for screening chickpea (Cicer aritinum L.) genotypes under rainfed conditions
In order to identify drought tolerant chickpea genotypes, an experiment was conducted in the west of Iran, during 2007-2009 cropping seasons. Several selection indices were used to illustrate genotypic differences in response to drought stress. The results of combined analysis of variance showed that year, genotype, stress conditions and their interaction effects were highly significant. Correl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2011